Molecular Electronics
Tuesday 08:30-10:00 in Phy 4.1.13
title: | Molecular Electronics |
uni code: | 52 241 |
type of lectures: | Spezialvorlesung / Special Lecture |
given by: | G Cuniberti |
lecturer: | G Cuniberti |
schedule: | 2003WS Tuesday 08:30-10:00 |
course language: | English |
room: | Phy 4.1.13 |
credits: | complementary course |
summary: | Molecular electronics is the outermost evolution of
conventional microelectronics. It proposes to substitute
electronic devices with molecular based ones. The idea behind
molecular electronics is that one day the miniaturization of
conventional semiconductor devices will reach a technological
limit (indeed at the nanometer scale, a molecular relevant
scale). This course will waive the many technological issues
opposing the building of a truly molecular computer: nature of
the contacts, aging..., but rather concentrate of the important
fundamental questions that molecular electronic experiments are
posing to theory. The course line will follow the
chronological experimental trend giving the theoretical
instruments for describing electronic conductance in
mesoscopic, molecular and biological systems. |
keywords: | experiments: 2DEG, quantum wires and quantum dots, carbon
nanotubes, DNA-based molecular wires
theory: tight binding models, Green functions, DFT |
problem set, lecture notes: |
|
|
lecture notes |
|
|
|
literature |
- R. Landauer, IBM J. Res. Develop. 1, 223 (1957)
- P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, Phys. Rev. B 22, 3519 (1980)
- E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981)
- D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981)
- M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6307 (1985)
- A. D. Stone, A. Szafer, IBM J. Res. Develop. 32, 384 (1988)
- H. U. Baranger, A. D. Stone , Phys. Rev. B 40, 8169 (1989)
|
|
|
(text)books |
- A. Aviram, and M. A. Ratner (Eds.), Molecular Electronics I; A. Aviram, V. Mujica, and M. A. Ratner (Eds.), Molecular Electronics II
- S. Datta, Electronic transport in mesoscopic systems
- D. K. Ferry, and S. M. Goodnick, Transport in Nanostructures
- V. May, and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction
- J. Jortner, and M. A. Ratner, Molecular Electronics: A 'Chemistry for the 21st Century'
- M. A. Ratner, Introduction to Quantum Mechanics in Chemistry; M. A. Ratner, Nanotechnology
- A. Szabo, N. S. Ostlund, Modern Quantum Chemistry
- J. M. Tour, Molecular Electronics
|
|
TOC: | INTRO
- historical framework: from the first transistor to the
molecular controllable break junctions, and beyond
- roadmaps and visions, and challenges to theory
MESO
tools: tight binding Hamiltonians, Landauer approach, Green function formalism(s), Keldysh formalism
- QHE
- conductance quantization
- 2DEG, quantum wires, quantum dots
NANO
tools: intro to quantum chemistry (Hatree Fock, DFT, ab initio methods...)
- molecular and atomic wires
- carbon nanotubes
- molecular break junction experiments
- Kondo effect in real atoms
BIO
tools: electron transfer theory (Frank Condon factor), force fields, molecular dynamics
- conductive polymers
- DNA based molecular nanowires
- conjugated molecules and ferritin
|
|