Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Development of a mechanically stable support for the osteoinductive biomaterial COLLOSS E

A. Lode, A. Bernhardt, K. Kroonen, M. Springer, A. Briest, and M. Gelinsky

Journal of Tissue Engineering and Regenerative Medicine 3, 149-152 (2009)

The application of bone graft substitutes with osteoinductive properties is of high importance for the repair of large bone defects. COLLOSS® E, a protein lyophilizate extracted from equine long bones, exhibits an osteoinductive potential which has been proven in several studies. In this work, a mechanically stable, but biodegradable support for COLLOSS® E has been developed aiming at a bone graft substitute that retains shape and size when coming in contact with body fluids. Mineralization of collagen type I, isolated from horse tendon, resulted in a stable collagen hydroxyapatite nanocomposite. By means of freeze drying, this composite was used to prepare 3D scaffolds which can be filled with the cotton-wool like COLLOSS® E material. These scaffolds exhibit a porous microstructure and a good mechanical stability in dry and wet state. Cell culture experiments with human bone marrow stromal cells (hBMSC) revealed the cytocompatibility of the newly developed composite material. Cells were able to adhere, proliferate and differentiate into the osteoblastic lineage. The osteoinductive nature of COLLOSS® E has been demonstrated by a significant higher activity of the osteogenic marker alkaline phosphatase (ALP) on combined scaffolds (mineralized collagen scaffolds filled with COLLOSS® E) compared to pure scaffolds. The combination of COLLOSS® E with scaffolds made of a collagen hydroxyapatite composite results in a synthetic bone graft substitute which can be completely remodelled into vital bone tissue opening an interesting new possibility for the therapy of bone defects.

doi absolute link10.1002/term.138
online abstract at the publisher site
publisher site (ISSN:0947-8396)
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2017.02.20 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany