Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Screw motion of DNA duplex during translocation through pore. I. introduction of the coarse-grained model

E. B. Starikow, D. Hennig, H. Yamada, R. Gutiérrez, B. Norden, and G. Cuniberti

Biophysical Reviews and Letters 4, 209 (2009)

Based upon the structural properties of DNA duplexes and their counterion-water surrounding in solution, we have introduced here a screw model which may describe translocation of DNA duplexes through artificial nanopores of the proper diameter (where the DNA counterion-hydration shell can be intact) in a qualitatively correct way. This model represents DNA as a kind of "screw," whereas the counterion-hydration shell is a kind of "nut." Mathematical conditions for stable dynamics of the DNA screw model are investigated in detail. When an electrical potential is applied across an artificial membrane with a nanopore, the "screw" and "nut" begin to move with respect to each other, so that their mutual rotation is coupled with their mutual translation. As a result, there are peaks of electrical current connected with the mutual translocation of DNA and its counterion-hydration shell, if DNA is possessed of some non-regular base-pair sequence. The calculated peaks of current strongly resemble those observed in the pertinent experiments. An analogous model could in principle be applied to DNA translocation in natural DNA-protein complexes of biological interest, where the role of "nut" would be played by protein-tailored "channels." In such cases, the DNA screw model is capable of qualitatively explaining chemical-to-mechanical energy conversion in DNA-protein molecular machines via symmetry breaking in DNA-protein friction.

online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1142/S1793048009000995
publisher site (ISSN:1793-7035)
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2019.10.01 Di
author: webadmin