Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


170. 


Algae-silica hybrid materials for biosorption of heavy metals



U. Soltmann, S. Matys, G. Kieszig, W. Pompe, H. Böttcher

Journal of Water Resource and Protection 2, 115 (2010)

Algae-silica hybrid materials for biosorption purposes were prepared using sol-gel technology. The resulting biological ceramics (biocers) ought to combine the mechanical stability and porosity of the silicate matrix with the algae's capability for the biosorption for heavy metals. The structure, mechanical properties, and sorption capability of such algae-silicate materials were investigated. Comparative equilibrium sorption experiments were performed batchwise with 13 different microalgae and macroalgae powders, and the corre-sponding algae biocers using waters loaded with either concentrations of nickel below 3mg/L or a mixture of different heavy metals (Cr, Ni, Cu, Pb). The algae biocers showed good mechanical stability up to an algae content of 30-50% and a total porosity of 40-60%. The silica matrix itself was involved in the sorption of metals. The metal binding capability of embedded macroalgae biomass was unaffected by immobilisation in the silica matrix. In contrast, for waters with nickel or different heavy metals, reduced sorption capability was shown by embedded microalgae.



doi absolute link10.4236/jwarp.2010.22013
online abstract at the publisher site
publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.11.15 Mi
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany