Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Highly conductive Boron nanotubes: Transport properties, work functions, and Structural stabilities

V. Bezugly, J. Kunstmann, B. Grundkötter-Stock, T. Frauenheim, T. Niehaus, and G. Cuniberti

ACS Nano, 5, 4997 (2011)

The transport properties, work functions, electronic structure, and energetic stability of boron nanotubes with different lattice structures, radii, and chiralities are investigated theoretically. As the atomic structure of boron nanotubes and the related sheets is still under debate, three probable structural classes (nanotubes derived from the α-sheet, the buckled triangular sheet, and the distorted hexagonal sheet) are considered. For comparison with recent transport measurements [J. Mater. Chem. 20, 2197, (2010)], the intrinsic conductance of ideal nanotubes with large diameters (D ≅ 10 nm) is determined. All considered boron nanotubes are highly conductive, irrespective of their lattice structures and chiralities, and they have higher conductivities than carbon nanotubes. Furthermore, the work functions of the three sheets and the corresponding large-diameter nanotubes are determined. It is found that the value of the nanotubes obtained from the α-sheet agrees well with the experiment. This indirectly shows that the atomic structure of boron nanotubes is related to the α-sheet. The energetic stability of nanotubes with diameters > 2 nm approaches that of the corresponding boron sheets, and α-sheet nanotubes are the most stable ones. However, for smaller diameters the relative stabilities change significantly, and for diameters < 0.5 nm the most stable structures are zigzag nanotubes of the buckled triangular sheet. For structures related to the distorted hexagonal sheet the most stable nanotube is discovered to have a diameter of 0.39 nm.

online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1021/nn201099a
online abstract at the publisher site
publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2017.02.20 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany