Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


266. 


Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output



Sebastian Pregl, Walter M. Weber, Daijiro Nozaki, Jens Kunstmann, L. Baraban, J. Opitz, Thomas Mikolajick, and G. Cuniberti

Nano Research 6, 381 (2013)

We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 A at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel array, the yield of functioning transistors is dramatically increased and deviceto-device variability is reduced compared to single devices. This new nanowirebased platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.



doi absolute link10.1007/s12274-013-0315-9
online abstract at the publisher site
publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.06.22 Do
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany