Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Ion Fluxes and Electro-osmotic Fluid Flow in Electrolytes around a Metallic Nanowire Tip under Large Applied ac Voltage

M. Poetschke, M. Bobeth, and G. Cuniberti

Langmuir, 29, 11525 (2013)

Motivated by the analysis of electrochemical growth of metallic nanowires from solution, we studied ion fluxes near nanoelectrodes in a binary symmetric electrolyte on the basis of the modified Poisson-Nernst-Planck equations in the strongly nonlinear region at large applied ac voltage. For an approximate calculation of the electric field near the nanowire tip, concentric spherical blocking electrodes were considered with radius of the inner electrode being of typically a few ten nanometers. The spatiotemporal evolution of the ion concentrations within this spherical model was calculated numerically by using the finite element method. The potential drop at the electric double layer, the electric field enhancement at the electrode surface, and the field screening in the bulk solution were determined for different bulk concentrations, ac voltages, and frequencies. The appearance of ac electro-osmotic fluid flow at the tip of a growing metallic nanowire is discussed, based on an estimation of the body force in the liquid near the nanowire tip, which was modeled by a cylinder with hemispherical cap. Electric field components tangential to the electrode surface exist near the contact between cylinder and hemisphere. Our analysis suggests that ac electro-osmotic flow causes an additional convective transport of metal complexes to the tip of the growing metal nanowire and thus affects the nanowire growth velocity.

online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1021/la401928m
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2017.02.20 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany