Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


288. 


Change of mechanical vertebrae properties due to progressive osteoporosis: combined biomechanical and finite-element analysis within a rat model



Robert Müller, Marian Kampschulte, Thaqif El Khassawna, Gudrun Schlewitz, Britta Hürter, Wolfgang Böcker, Manfred Bobeth, Alexander C. Langheinrich, Christian Heiss, Andreas Deutsch, and G. Cuniberti

Med. Biol. Eng. Comput. 52, 405-414 (2014)

For assessing mechanical properties of osteoporotic bone, biomechanical testing combined with in silico modeling plays a key role. The present study focuses on microscopic mechanical bone properties in a rat model of postmenopausal osteoporosis. Female Sprague-Dawley rats were (1) euthanized without prior interventions, (2) sham-operated, and (3) subjected to ovariectomy combined with a multi-deficiencies diet. Rat vertebrae (corpora vertebrae) were imaged by micro-Ct, their stiffness was determined by compression tests, and load-induced stress states as well as property changes due to the treatment were analyzed by finite-element modeling. By comparing vertebra stiffness measurements with finite-element calculations of stiffness, an overall microscopic Youngs modulus of the bone was determined. Macroscopic vertebra stiffness as well as the microscopic modulus diminish with progression of osteoporosis. After strong initial changes of bone morphology, further decrease in macroscopic stiffness is largely due to decreasing microscopic Youngs modulus. The micromechanical stress calculations reveal particularly loaded vertebra regions prone to failure. Osteoporosis-induced changes of the microscopic Youngs modulus alter the fracture behavior of bone, may influence bone remodeling, and should be considered in the design of implant materials.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1007/s11517-014-1140-3
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.09.19 Di
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany