Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology


prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


299. 


Quantum transport in chemically functionalized graphene at high magnetic field: defect-induced critical states and breakdown of electron-hole symmetry



N. Leconte, F. Ortmann, A. Cresti, J.-C. Charlier and S. Roche

2D Materials 1 , 021001 (2014)

Unconventional magnetotransport fingerprints in the quantum Hall regime (with applied magnetic fields from one to several tens of Tesla) in chemically functionalized graphene are reported. Upon chemical adsorption of monoatomic oxygen (from 0.5% to few percents), the electron-hole symmetry of Landau levels (LLs) is broken, while a double-peaked conductivity develops at lowenergy, resulting from the formation of critical states conveyed by the random network of defects-induced impurity states. Scaling analysis hints towards the existence of an additional zero-energy quantized Hall conductance plateau, which is here not connected to degeneracy lifting of LLs by sublattice symmetry breaking. This singularly contrasts with usual interpretation, and unveils a new playground for tailoring the fundamental characteristics of the quantum Hall effect.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1088/2053-1583/1/2/021001
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.02.20 Mo
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany