Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Interplay Between Mechanical and Electronic Degrees of Freedom in Stacked Molecular Junctions: From Single Molecules to Mesoscopic Nanoparticle Networks

Tahereh Ghane, Daijiro Nozaki, Arezoo Dianat, Anton Vladyka, Rafael Gutierrez, Jugun Prakash Chinta, Shlomo Yitzchaik, Michel Calame, G. Cuniberti

The Journal of Physical Chemistry C 119, 6344 (2015)

Functionalized nanoparticle networks offer a model system for the study of charge transport in low-dimensional systems as well as a potential platform to implement and test electronic functionalities. The electrical response of a nanoparticle network is expected to sensitively depend on the molecular interconnects, i.e., on the linker chemistry. If these linkers have complex charge transport properties, then phenomenological models addressing the large-scale properties of the network need to be complemented with microscopic calculations of the network building blocks. In this study we focus on the interplay between conformational fluctuations and electronic -stacking in single-molecule junctions and use the obtained microscopic information on their electrical transport properties to parametrize transition rates describing charge diffusion in mesoscopic nanoparticle networks. Our results point out the strong influence of mechanical degrees of freedom on the electronic transport signatures of the studied molecules. This is then reflected in the varying charge diffusion at the network level. The modeling studies are complemented with first charge transport measurements at the single-molecule level of -stacked molecular dimers using state-of-the-art mechanically controllable break junction techniques in a liquid environment.

doi absolute link10.1021/jp512524z
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2017.02.20 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany