Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology


prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


354. 


Printable Parallel Arrays of Si Nanowire Schottky-Barrier-FETs with Tunable Polarity for Complementary Logic



Sebastian Pregl, André Heinzig, Larysa Baraban,G. Cuniberti, Thomas Mikolajic, and Walter M. Weber

IEEE Transactions on Nanotechnology 15 2542525 (2016)

In this paper, we present a novel technology of printable bottom-up grown Si nanowire parallel arrays for low-dissipation power electronics. Parallel aligned layers of monocrystalline Si nanowires can be deposited on arbitrary substrates over large areas by the printing process. The presented transistors consist of parallel arrays of longitudinal NiSi2-Si-NiSi2 nanowire heterostructures, which naturally show ambipolar transistor behavior when a single gate is employed. By a double gate architecture, a reconfigurable transitor component is created, for which unipolar p- or n-type characteristics can be obtained depending on the polarity of the second gate. Transfer and output characteristics of these transistors on a Si/SiO2 substrate with back gate, top gate, and reconfigurable double gate architecture are presented here in detail. Very high on/off-current ratios of over 108 are achieved with very low off-currents. Due to the high number of nanowires incorporated into individual parallel arrays, output currents of 0.5 mA and a high yield of functional transistors of close to 100% at nanowire coated areas are demonstrated.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1109/TNANO.2016.2542525
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.03.20 Mo
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany