Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


369. 


From Fluorine to Fluorene - A Route to Thermally Stable aza-BODIPYs for Organic Solar Cell Application



M. Lorenz-Rothe, KS. Schellhammer, T. Jageler-Hoheisel, R. Meerheim, S. Kraner, MP. Hein, C. Schunemann, ML. Tietze, M. Hummert, F. Ortmann, G. Cuniberti, C. Korner, K. Lei

Adv. Elect. Mat. 2 (2016)

Despite favorable absorption characteristics, borondipyrromethenes (BODIPYs) often lack thermal stability preventing their application in vacuum-processed organic solar cells. In this paper, the replacement of the BF2 unit by borafluorene as a new functionalization strategy for this molecule class is explored. This approach is applied to a set of prototype molecules and demonstrates improved thermal stability, strong absorption in the red and near-infrared region of the sun spectrum, as well as excellent solar cell performance. Synthesis is realized from free ligands via complexation with 9-chloro-9-borafluorene giving high yields up to 81%. Planar heterojunction cells of these complexes exhibit high fill factors of more than 70%. Bulk heterojunction solar cells with C-60 are optimized yielding power conversion efficiencies up to 4.5%, rendering the investigated prototype compounds highly competitive among other NIR-absorbing small-molecule donor materials. Comprehensive experimental material characterization and solar cell analysis are carried out, and the results are discussed together with simulations of molecular properties. Based on this analysis, additional performance improvements are proposed by engineering the intramolecular steric interactions towards further red-shifted absorption.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1002/aelm.201600152
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.08.21 Mo
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany