Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


385. 


Anisotropic Thermoelectric Response in Two-Dimensional Puckered Structures



L. Medrano Sandonas, D. Teich, R. Gutierrez, T. Lorenz, A. Pecchia, G. Seifert, and G. Cuniberti

J. Phys. Chem. C 120, 18841-18849 (2016)

Two-dimensional semiconductor materials with puckered structure offer a novel playground to implement nanoscale thermoelectric, electronic, and optoelectronic devices with improved functionality. Using a combination of approaches to compute the electronic and phonon band structures with Green’s function based transport techniques, we address the thermoelectric performance of phosphorene, arsenene, and SnS monolayers. In particular, we study the influence of anisotropy in the electronic and phononic transport properties and its impact on the thermoelectric figure of merit ZT. Our results show no strong electronic anisotropy, but a strong thermal one, the effect being most pronounced in the case of SnS monolayers. This material also displays the largest figure of merit at room temperature for both transport directions, zigzag (ZT ∼ 0.95) and armchair (ZT ∼ 1.6), thus hinting at the high potential of these new materials in thermoelectric applications.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1021/acs.jpcc.6b04969
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.08.21 Mo
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany