Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


396. 


Copper Electroplating with Polyethylene Glycol I. An Alternative Hysteresis Model without Additive Consumption



HL. Yang, A. Dianat, M. Bobeth, G. Cuniberti

J. Electrochem. Soc. 164, D196-D203 (2017)

Additives play an important role in electrochemical deposition and understanding their working mechanism is a great challenge. In cyclic voltammetry measurements of copper deposition, hysteresis is ubiquitously observed. Correct prediction of hysteresis behavior is an important test for deposition models. In previous models, including poly(ethylene glycol) (PEG) and chloride ions as additives, a common assumption to explain the hysteresis is the consumption of additives during copper deposition. However, second-ion mass spectrometry measurements often detected comparatively low levels of impurities in deposits. Therefore, we propose here an alternative mechanism for explaining hysteresis curves without invoking additive consumption. Essential ingredients of our models are: (i) a strongly nonlinear dependence of the maximal possible PEG coverage on the chloride coverage on the copper surface, (ii) a nonlinear dependence of the deposition current on the PEG surface coverage, and (iii) an additional activation of the desorption of additives with increasing copper deposition current. We demonstrate that our model reproduces characteristic features of cyclic voltammograms measured under vastly different conditions and exhibiting pronounced hysteresis. Furthermore, simulations are compared well to PEG adsorption/desorption experiments with varying additive concentrations. The proposed model may serve to describe deposition situations with negligible additive consumption. (C) 2017 The Electrochemical Society. All rights reserved.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1149/2.1051704jes
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.08.21 Mo
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany