Informationen zu Lehrveranstaltungen in →Opal / Information about lectures can be found in →Opal

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Orthogonal experimental design of titanium dioxide-Poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications

A. Vild, S. Teixeira, K. Kühn, G. Cuniberti, and V. Sencadas

J. Environmental Chem. Eng. 4, 3151-3158 (2016)

An orthogonal experimental method was designed to assess the influence of the electrospinning processing parameters on average diameter and distribution of poly(methyl methacrylate) (PMMA) fibers. Based on the orthogonal experimental design analysis, electrospun TiO2-PMMA nanocomposites were processed with the optimal polymer processing conditions to obtain thin fibers with a high overall surface area. Further it was found that the average fiber diameter decreases from 2.0 +/- 0.5 down to 1.2 +/- 0.2 mu m with increasing photocatalyst content. Moreover, the wettability of samples was independent of the filler amount, and showed strong hydrophobic behavior. Thermogravimetric analysis showed that for polymer solutions with concentrations higher than 10 wt%, there was a loss of the photocatalytic particles during processing, being more evident for the sample with 40 wt% particles present in the solution, with a loss of 8 wt% of ceramic particles. The immobilization of the TiO2 nanoparticles in the polymer fibers led to an increase of the thermal stability. The photocatalytic performance was assessed by using methylene blue (MB). The nanocomposite electrospun fiber membranes had a remarkable photocatalytic activity, especially the one with higher amount of TiO2, with all the MB dye being removed from the solution after 100 min, under UV. The orthogonal experimental design is an efficient way to save time and materials in the production of photocatalytic membranes. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.

online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1016/j.jece.2016.06.029
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2021.09.01 Wed
author: webadmin