Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


426. 


Molecular Self-Assembly Driven by On-Surface Reduction: Anthracene and Tetracene on Au(111)



J. Krüger, F. Eisenhut, T. Lehmann, J. M. Alonso, J. Meyer, D. Skidin, R. Ohmann, D. A. Ryndyk, D. Pérez, E. Guitián, D. Peña, F. Moresco, G. Cuniberti

J. Phys. Chem. C, Article ASAP (2017)

Epoxyacenes adsorbed on metal surfaces form acenes during thermally induced reduction in ultrahigh vacuum conditions. The incorporation of oxygen bridges into a hydrocarbon backbone leads to an enhanced stability of these molecular precursors under ambient condition; however, it has also a distinct influence on their adsorption and self-assembly on metal surfaces. Here, a low-temperature scanning tunneling microscopy (LT-STM) study of two different epoxyacenes on the Au(111) surface at submonolayer coverage is presented. Both molecules show self-assembly based on hydrogen bonding. While for the molecules with a single epoxy moiety nanostructures of three molecules are formed, extended molecular networks are achieved with two epoxy moieties and a slightly higher surface coverage. Upon annealing at 390 K, the molecules are reduced to the respective acene; however, both systems keep a similar assembled structure. The experimental STM images supported by theoretical calculations show that the self-assembly of the on-surface fabricated acenes is greatly influenced by the on-surface reaction and strongly differs from the adsorption pattern of directly deposited acenes, highlighting the importance of the cleaved oxygen in the self-assembly.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1021/acs.jpcc.7b06131
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.12.13 Mi
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany