Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


447. 


Gap engineering for improved control of memristor nanosensors



B. Ibarlucea, L. Baraban, G. Cuniberti, K. Jim, T. Rim, C.-K. Baek, A. Ascoli, R. Tetzlaff

European Conference on Circuit Theory and Design (IEEE ECCTD) (2017)

Memristor biosensors are electronic systems very recently born electronic systems in the quest for highly sensitive biodetection approaches. The presence of charged species in the vicinity of a semiconductor channel connecting a source and a drain electrode opens a voltage gap between the two current minima in the semi-logarithmic output curve. Despite the tremendous sensitivity demonstrated in the past, the initial state of the gap limits the charge sign of the analyte to be detected, i.e. with an initial closed gap the detection of analytes with a gap-closing effect will remain challenging. Here, we propose a gap controlling process using a third electrode that mimics the presence of charged molecules of the desired sign. We test the function of the gap-control terminal via a back-gate in dry condition and we demonstrate the operation in liquid environment using a top-gate electrode. Finally, toward (bio)chemical sensing applications, we discriminate solutions with different pH values. The hereby proposed method is critical to allow broadening the range of analytes that can be sensed directly in liquid environment regardless their charge sign.



doi absolute link10.1109/ECCTD.2017.8093293
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2018.08.14 Di
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany