Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


459. 


First-Principle-Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries



L. Medrano Sandonas, H. Sevinçli, R. Gutiérrez, and G. Cuniberti

Advanced Sciences 1700365 (2017)

The integrity of phonon transport properties of large graphene (linear and curved) grain boundaries (GBs) is investigated under the in uence of struc- tural and dynamical disorder. To do this, density functional tight-binding (DFTB) method is combined with atomistic Green's function technique. The results show that curved GBs have lower thermal conductance than linear GBs. Its magnitude depends on the length of the curvature and out-of-plane structural distortions at the boundary, having stronger in uence the latter one. Moreover, it is found that by increasing the defects at the boundary, the transport properties can strongly be reduced in comparison to the effect pro- duced by heating up the boundary region. This is due to the large reduction of the phonon transmission for in-plane and out-of-plane vibrational modes after increasing the structural disorder in the GBs.



online .pdf paper (for personal use only)online .pdf paper (for personal use only)
doi absolute link10.1002/advs.201700365
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2018.12.04 Di
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany