International Summer School
Materials 4.0: Deep Mechanics

August 19-23, 2019
Applications open soon! #materials40

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum

B. Naydenov, S. Torsney, A.S. Bonilla, M. El Garah, A Ciesielski, A. Gualandi, L. Mengozzi, P.G. Cozzi, R. Gutierrez, P. Samori, G. Cuniberti, J.J. Boland

Langmuir 34, 7698 (2018)

We combine ambient (air) and ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) investigations together with density functional theory (DFT) calculations to gain a subnanometer insight into the structure and dynamic of two-dimensional (2D) surface-supported molecular networks. The planar tetraferrocene-porphyrin molecules employed in this study undergo spontaneous self-assembly via the formation of hydrogen bonded networks at the gold substrate-solution interface. To mimic liquid phase ambient deposition conditions, film formation was accomplished in UHV by electro-spraying a solution of the molecule in chloroform onto an Au(111) substrate, thereby providing access to the full spectroscopic capabilities of STM that can be hardly attained under ambient conditions. We show that molecular assembly on Au (111) is identical in films prepared under the two different conditions, and in good agreement with the theoretical predictions. However, we observe the contrast found for a given STM bias condition to be different in ambient and UHV conditions despite the similarity of the structures, and we propose possible origins of the different imaging contrast. This approach could be valuable for the thorough characterization of surface systems that involve large molecules and are prepared mainly in ambient conditions.

doi absolute link10.1021/acs.langmuir.8b01374
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2019.03.20 Mi
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany