Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Enhanced Magnetoresistance in Chiral Molecular Junctions

V. V. Maslyuk, R. Gutierrez, A. Dianat, V. Mujica, and G. Cuniberti

J. Phys. Chem. Letters 9, 5453 (2018)

Chirality-induced spin selectivity (CISS) is a recently discovered effect, whose precise microscopic origin has not yet been fully elucidated; it seems, however, clear that spin-orbit interaction plays a pivotal role. Various model Hamiltonian approaches have been proposed, suggesting a close connection between spin selectivity and filtering and helical symmetry. However, first-principles studies revealing the influence of chirality on the spin polarization are missing. To clearly demonstrate the influence of the helical conformation on the spin polarization properties, we have carried out spin-dependent Density-Functional Theory (DFT) system based transport calculations for a model molecular system. It consists of alpha-helix and beta-strand conformations of an oligo-glycine peptide, which is bonded to a nickel electrode and to a gold electrode in a two-terminal setup, similar to a molecular junction or a local probe, for example, in STM or AFM configurations. We have found that the alpha-helix conformation displays a spin polarization, calculated through the intrinsic magneto-resistance of the junction, about 100-1000 times larger than the linear beta-strand, clearly demonstrating the crucial role played by the molecular helical geometry on the enhancement of spin polarization associated with the CISS effect.

doi absolute link10.1021/acs.jpclett.8b02360
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2021.03.17 Wed
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany