Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



ITO Work Function Tunability by Polarizable Chromophore Monolayers

A. Gankin, E. Mervinetsky, I. Alshanski, J. Buchwald, A. Dianat, R. Gutierrez, G. Cuniberti, R. Sfez, and S. Yitzchaik

Langmuir 35 8 (2019)

The ability to tune the electronic properties of oxide-bearing semiconductors such as Si/SiO 2 or transparent metal oxides such as indium-tin oxide (ITO) is of great importance in both electronic and optoelectronic device applications. In this work, we describe a process that was conducted on n-type Si/SiO 2 and ITO to induce changes in the substrate work function (WF). The substrates were modified by a two-step synthesis comprising a covalent attachment of coupling agents' monolayer followed by in situ anchoring reactions of polarizable chromophores. The coupling agents and chromophores were chosen with opposite dipole orientations, which enabled the tunability of the substrates' WF. In the first step, two coupling agents with opposite molecular dipole were assembled. The coupling agent with a negative dipole induced a decrease in WF of modified substrates, while the coupling agent with a positive dipole produced an increase in WFs of both ITO and Si substrates. The second modification step consisted of in situ anchoring reaction of polarizable chromophores with opposite dipoles to the coupling layer. This modification led to an additional change in the WFs of both Si/SiO 2 and ITO substrates. The WF was measured by contact potential difference and modeled by density functional theory-based theoretical calculations of the WF for each of the assembly steps. A good fit was obtained between the calculated and experimental trends. This ability to design and tune the WF of ITO substrates was implemented in an organic electronic device with improved I-V characteristics in comparison to a bare ITO-based device.

doi absolute link10.1021/acs.langmuir.8b03943
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2020.12.01 Tue
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany