Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Green function, quasi-classical Langevin and Kubo-Greenwood methods in quantum thermal transport

H. Sevinçli, S. Roche, G. Cuniberti, M. Brandbyge, R. Gutierrez, and L. M. Sandonas

J. Phys.: Condensed Matter 31 (2019)

With the advances in fabrication of materials with feature sizes at the order of nanometers, it has been possible to alter their thermal transport properties dramatically. Miniaturization of device size increases the power density in general, hence faster electronics require better thermal transport, whereas better thermoelectric applications require the opposite. Such diverse needs bring new challenges for material design. Shrinkage of length scales has also changed the experimental and theoretical methods to study thermal transport. Unsurprisingly, novel approaches have emerged to control phonon flow. Besides, ever increasing computational power is another driving force for developing new computational methods. In this review, we discuss three methods developed for computing vibrational thermal transport properties of nano-structured systems, namely Green function, quasi-classical Langevin, and Kubo-Green methods. The Green function methods are explained using both nonequilibrium expressions and the Landauer-type formula. The partitioning scheme, decimation techniques and surface Green functions are reviewed, and a simple model for reservoir Green functions is shown. The expressions for the Kubo-Greenwood method are derived, and Lanczos tridiagonalization, continued fraction and Chebyshev polynomial expansion methods are discussed. Additionally, the quasi-classical Langevin approach, which is useful for incorporating phonon-phonon and other scatterings is summarized.

doi absolute link10.1088/1361-648X/ab119a
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2020.12.01 Tue
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany