Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


512. 


S-layer protein-AuNP systems for the colorimetric detection of metal and metalloid ions in water



Jung, J., Lakatos, M., Bengs, S., Matys, S., Raff, J., Blüher, A., G. Cuniberti

Colloids and Surfaces B: Biointerfaces 183 110284 (2019)

Bacterial surface layer proteins (S-layer) possess unique binding properties for metal ions. By combining the binding capability of S-layer proteins with the optical properties of gold nanoparticles (AuNP), namely plasmonic resonance, a colorimetric detection system for metal and metalloid ions in water was developed. Eight S-layer proteins from different bacteria species were used for the functionalization of AuNP. The thus developed biohybrid systems, AuNP functionalized with S-layer proteins, were tested with different metal salt solutions, e.g. Indium(III)-chloride, Yttrium(III)-chloride or Nickel(II)-chloride, to determine their selective and sensitive binding to ionic analytes. All tested S-layer proteins displayed unique binding affinities for the different metal ions. For each S-layer and metal ion combination markedly different reaction patterns and differences in concentration range and absorption spectra were detected by UV/vis spectroscopy. In this way, the selective detection of tested metal ions was achieved by differentiated analysis of a colorimetric screening assay of these biohybrid systems. A highly selective and sensitive detection of yttrium ions down to a concentration of 1.67 × 10−5 mol/l was achieved with S-layer protein SslA functionalized AuNP. The presented biohybrid systems can thus be used as a sensitive and fast sensor system for metal and metalloid ions in aqueous systems.



doi absolute link10.1016/j.colsurfb.2019.06.014
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2020.09.26 Sat
author: webadmin