Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


533. 


Two‐Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device



S. Park, Z. Liao, B. Ibarlucea, H. Qi, H. Lin, D. Becker, J. Melidonie, T. Zhang, H. Sahabudeen, L. Baraban, C. Baek, Z. Zheng, E. Zschech, A. Fery, T. Heine, U. Kaiser, G. Cuniberti, R. Dong, and X. Feng

Angew. Chem. 132 21 (2020)

Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin‐film through solvothermal method and on‐solid‐surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin‐film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 μm), the reported thin‐film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two‐dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF‐PP or 2D BECOF‐PN) by employing a surfactant‐monolayer‐assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF‐PP is featured as free‐standing thin film with large single‐crystalline domains up to ≈60 μm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF‐PP film on silicon nanowire‐based field‐effect transistor is demonstrated as a bio‐inspired system to mimic neuronal synapses, displaying a learning-erasing-forgetting memory process.



doi absolute link10.1002/ange.201916595
online abstract at the publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2020.12.01 Tue
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office.nano@tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany