Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


537. 


Exploring the organic–inorganic interface in biosilica: atomistic modeling of polyamine and silica precursors aggregation behavior



H. Eckert, M. Montagna, A. Dianat, R. Gutierrez, M. Bobeth, and G. Cuniberti

BMC Mat 2 1 (2020)

Diatoms are a significant group of algae displaying a sizeable morphological diversity, whose underlying structure arises from nanopatterned silica. Extensive experimental evidence suggests that a delicate interplay between various organic components and polysilicic acid plays a crucial role in biosilica mineralization. Thus, gaining insight into the properties of this organic–inorganic interface is of great interest in understanding the mechanisms controlling biosilica formation over different length scales. In this work, we use all-atom Molecular Dynamics simulations to investigate the aggregation behavior of polysilicic acid and silica nanoparticles in solution in the presence of protonated long-chain polyamines with a focus on the nature of the driving forces mediating the organic–inorganic aggregation process. Our results show that electrostatic forces between organic and inorganic species are the dominant interaction responsible for largely preserving the structural integrity of the organic–inorganic aggregates in solution. Thus, aggregates involving electrically neutral polysilicic acid are fully dissolved in an aqueous environment, since hydrogen bonding and van der Waals interactions turn out to be not strong enough to keep the aggregates together. Our main simulation results are in qualitative agreement with in vitro experiments, so that we expect they can contribute to shedding light on the initial stages of biosilica mineralization in diatoms.



doi absolute link10.1186/s42833-020-00012-z
online abstract at the publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2020.10.28 Wed
author: webadmin