Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


545. 


Boron-Doped Single-Walled Carbon Nanotubes with Enhanced Thermoelectric Power Factor for Flexible Thermoelectric Devices



Y. Liu, V. Khavrus, T. Lehmann, H. L. Yang, L. Stepien, M. Greifzu, S. Oswald, T. Gemming, V. Bezugly, and G. Cuniberti

ACS Appl. Ener. Mat. 3 3 (2020)

We report a detailed experimental and theoretical study on thermoelectric properties of boron-doped single-walled carbon nanotubes (B-SWCNTs), which are versatile building blocks of flexible thermoelectric devices. Implantations of substitutional boron dopants (0.1-0.5 atom %) in SWCNTs are realized using thermal diffusion. The after-synthesis boron doping simultaneously improves the Seebeck coefficient (S) and electrical conductivity (σ) of SWCNT networks, leading to an S2σ value of 226 μW/mK2. First-principle calculations indicate that a few tenths atom % of substitutional boron atoms improve the S value of semi-conducting SWCNTs but reduce the electron conductance in individual SWCNTs. The high σ of B-SWCNT networks is attributed to the improved electrical transport between laterally contacted metallic and semi-conducting nanotubes. The produced B-SWCNTs are stable over high-temperature annealing or processing in liquid media, which inspired us to fabricate thermoelectric modules by a low-cost printing method. The modules demonstrate an increased thermoelectric efficiency by 76% compared to those with undoped SWCNTs. This work provides a feasible fabrication strategy and physical insights for B-SWCNT-based flexible thermoelectrics.



doi absolute link10.1021/acsaem.9b02243
online abstract at the publisher site
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2020.10.28 Wed
author: webadmin