Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



In vitroossification and remodeling of mineralized collagen I scaffolds

H. Domaschke, M. Gelinsky, B. Burmeister, R. Fleig, T. Hanke, A. Reinstorf, W. Pompe, A. Rösen-Wolff

Tissue Engineering 12, 949 (2006)

A promising strategy of bone tissue engineering is to repair bone defects by implanting biodegradable scaffolds that can undergo remodeling and be replaced completely by autologous bone tissue. For this purpose, it is necessary to create scaffolds that can be degraded by osteoclasts and enable osteoblasts to build new mineralized bone matrix. In order to achieve this goal a new porous material has been developed using biomimetically mineralized collagen I. These scaffolds were co-cultured with osteoclast-like cells and osteoblasts in order to characterize the capacity of these cells to remodel the material in vitro. It was possible to show the development of biologically active osteoclast- like cells that were able to invade and degrade the scaffold. They degraded the scaffold by internalizing it as intracellular vesicles, thereby making room for osteoblasts to invade and build new bone matrix. In addition, it could be shown that osteoblasts proliferated, differentiated, and produced new mineralized extracellular matrix. Hence, it could be shown that co-culture of osteoclastlike cells and osteoblasts on biomimetically mineralized collagen I is a promising approach for bone tissue engineering. In addition, it can be applied to study the process of bone remodeling in vitro.

doi absolute link10.1089/ten.2006.12.949
online abstract at the publisher site
publisher site (ISSN:1076-3279)
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2018.04.11 Mi
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany