Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]


87. 


Development of novel scaffolds for tissue engineering by flock technology



A. Walther, A. Bernhardt, W. Pompe, M. Gelinsky, B. Mrozik, G. Hoffmann, C. Cherif, H. Bertram, W. Richter, G. Schmack

Textile Research Journal 77, 892-899 (2007)

Flock technology is a method well known in the textile industry. Short fibers are applied almost vertically on a substrate, coated with a flocking adhesive. Until now, this technology has not been used in the field of biomaterials. Our aim was to use electrostatic flocking for fabricating a novel type of scaffolds for tissue engineering. This method offers the possibility to create matrices with anisotropic properties that have a high compressive strength despite high porosity. First, experiments were performed using a membrane made of mineralized collagen as substrate, gelatine as adhesive and polyamide flock fibers. Different kinds of cells were cultured in the scaffolds for up to six weeks. Using microscopic methods and biochemical analyses, we could demonstrate that cells adhered and proliferated well in this new type of scaffold. Therefore, we can summarize that flocking is a technology suitable for fabrication of scaffolds for cell cultivation and tissue engineering.



doi absolute link10.1177/0040517507081283
online abstract at the publisher site
publisher site (ISSN:0040-5175)
export BibTeX citation (txt file)
export EndNote citation (ris file)


prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996

[back]



















































last modified: 2017.06.22 Do
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany