Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling

W. Schneiders, A. Reinstorf, W. Pompe, R. Grass, M. Holch, H. Zwipp, S. Rammelt

Bone 40, 1048 (2007)

This study describes the early interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (HA/Coll) and its modifications with sodium citrate (CI), calcium carbonate (CA), phosphoserine (P) and phosphoserine plus RGD-peptide (RGD). Cylindrical implants of HA/Coll and its modifications were inserted into the tibia of Wistar rats. We analysed 6 specimens per group at days 2, 4, 7, 14 and 28. CI, P and RGD modifications showed improved material properties (finer microstructure and higher compressive strength) compared to CA and HA/Coll implants. The powder X-ray diffraction (XRD) showed that the addition of P and CI led to an increase of alpha-TCP peaks while the diffraction patterns of the non-modified cement (HA/Coll) were quite similar with that of natural bone. All of the implants healed without adverse reactions. A significantly higher number of TRAP-positive osteoclasts were observed around CI, RGD and P on day 7 compared to CA and HA/Coll. Around CI, P and RGD a significantly delayed increase of ED1-positive mononuclear cells was detected. The amount of direct bone contact after 28 days was significantly higher around CI, P and RGD compared to CA and HA/Coll implants. The addition of CI, P and RGD appears to enhance bone remodelling at the early stages of bone healing, leading to increased bone formation around HA/Coll composite cements.

doi absolute link10.1016/j.bone.2006.11.019
online abstract at the publisher site
publisher site (ISSN:8756-3282)
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2017.02.20 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany