Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

For a complete list, check out Google Scholar.

prev/next pubs | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996



Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity

A. Lode, C. Wolf-Brandstetter, A. Reinstorf, A. Bernhardt, U. König, W. Pompe, M. Gelinsky

Journal of Biomededical Materials Research Part A 81A, 474 (2007)

Calcium phosphate bone cements are of great interest for bone replacement since the nanocrystalline structure allows their remodelling into native bone tissue. A strategy to accelerate vascularization of the implant region is the functionalization with vascular endothelial growth factor (VEGF), which is known to mediate angiogenesis in vivo. In this study, the release of recombinant human VEGF (rhVEGF165) following physical adsorption to Biocement D (BioD) and several modifications were investigated. Our data demonstrate a high VEGF binding capacity of BioD and a sustained release with a moderate initial burst. A proliferation assay using endothelial cells revealed maintenance of biological activity of VEGF after release from BioD. Release behavior of BioD was not improved by modification with mineralized collagen type I, as well as with a combination of mineralized collagen with O-phospho-L-serine and sodium citrate, respectively. In contrast, a positive impact of these modifications on the activity of released VEGF was observed; in case of the phosphoserine- and sodium citrate-modified cements, the biological efficacy of released VEGF was even higher than that of nonreleased control VEGF. We conclude that the bone implant material BioD and, especially, the phosphoserine modification may support activation of angiogenesis by delivery of VEGF in a local and sustained manner.

doi absolute link10.1002/jbm.a.31024
online abstract at the publisher site
publisher site (ISSN:0021-9304; 1549-3296)
export BibTeX citation (txt file)
export EndNote citation (ris file)

prev/next 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996


last modified: 2018.04.11 Mi
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany