Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

» presentations   » 2009.03.25

Screw motion of a DNA duples during translocation through a nanopore: A coarse-grained model (TT 23.4)

R. Gutierrez, J. Starikov, D. Hennig, H. Yamada, G. Cuniberti, and B. Norden

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM)
DPG Spring Meeting of the Section Condensed Matter (SKM)

2009.03.25; (HSZ 105) Dresden, Germany

Based upon the structural properties of DNA and their counterion-water surrounding in solution, we have introduced a screw model describing DNA translocation through artificial nanopores in a qualitatively correct way.[1] This model represents DNA as a ?screw?, whereas the counterion-hydration shell is a ?nut?. When an electrical potential is applied across a membrane with a nanopore, the ?screw? and ?nut? begin to move with respect to each other, so that their mutual rotation is coupled with their mutual translation. As a result, there are peaks of electrical current connected with the mutual translocation of DNA and its counterion-hydration shell, if DNA has some non-regular base-pair sequence. The calculated peaks of current strongly resemble those observed in the pertinent experiments.

[1] E. B. Starikov, D. Hennig, H. Yamada, R. Gutierrez, G. Cuniberti, and B. Norden, submitted (2008)

abstract (pdf)

conference announcement (html)

people| research | teaching | links | internal | home

last modified: 2017.05.24 Mi
author: webadmin