Informationen zu Lehrveranstaltungen in Opal / Information about lectures can be found in Opal

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

» presentations   » 2016.03.10

Quantitative ab initio simulations of nanocarbon-metal extended contacts

Artem Fediai, Dmitry Ryndyk, and Gianaurelio Cuniberti

DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM)

2016.03.10; Regensburg, Germany

Recently developed approach presented in [1] allows to get quantitative information about the resistance Rc, effective contact length Lc, and contacts resistance scaling Rc(Lc) in different extended side contacts depending on the electrode material. We apply this approach to find a contact resistance of side CNT-metal contacts, transfer length in graphene-metal contacts and electronic properties of the diodes with CNT channel and asymmetric contacts (with the electrodes made of different metals). These kinds of ab initio simulations were previously impossible due to numerical intractability of the side contacts longer then several nanometers. Our approach explicitly uses extended contact model concept, enforced by modular approach. This allows us to overcome numerical problems and understand physical processes in extended contacts.

conference announcement (html)

people| research | teaching | links | internal | home

last modified: 2021.03.17 Wed
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany