International Summer School
Materials 4.0: Deep Mechanics

August 19-23, 2019
Applications open soon! #materials40

Skip to content.


search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology

» presentations   » 2016.03.10

Stacking different two-dimensional materials to fabricate a high mobility transistor

Himani Arora, Gotthard Seifert, Gianaurelio Cuniberti, Manfred Helm, and Artur Erbe

DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM)

2016.03.10; Regensburg, Germany

In recent years, several two-dimensional (2D) semiconducting materials like graphene, MoS2, WSe2, silicene, germanene etc. have been produced and studied. Their semiconducting properties allow the development of 2D structures, whose electronic properties can be tuned. By fabricating gate electrodes on the 2D materials, field effect transistors have been demonstrated. Further exciting possibilities open up when these materials are stacked together to achieve the desired application. The first series of experiments are carried out with graphene nanoribbons (GNRs) deposited on functionalized Si/SiO2 substrate. Prior to the deposition, the Si/SiO2 substrate is patterned with Ni alignment marks, to locate and characterize GNRs by AFM and Raman spectroscopy. Au electrodes are then fabricated on selected GNRs using electron beam lithography to measure the electrical transport properties. In future, the aim will be to fabricate a heterostructure by stacking different 2D materials, whose different properties can complement each other to fabricate a high mobility transistor

conference announcement (html)

people| research | teaching | links | internal | home

last modified: 2019.03.04 Mo
author: webadmin

Prof. Dr. Gianaurelio Cuniberti
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany