Skip to content.

TUD

search  |  internal  |  deutsch
Personal tools
TU Dresden » Faculty of Mechanical Science and Engineering » Institute for Materials Science » Chair of Materials Science and Nanotechnology



Tuesday, 26 April 2016
(at 17:00 in room BIOTEC, seminar rooms E05/E06, Broadcasted from KU Leuven, Belgium)
Add to your Google Calendar


From Advanced CMOS to Beyond CMOS

Dr. Iuliana Radu


IMEC, Belgium
   






The information infrastructure is growing and becoming ubiquitous around us. Continuous connectivity, which we take for granted now, did not exist 10 years ago. This growth has been largely fueled by the scaling of the transistors which has allowed increased performance for comparable energy consumption and lower cost. Continuing growth further will demand a variety of electronic systems with different performance and energy efficiency requirements to satisfy a large set of functionality and cost needs.
Early on, the scaling of the transistors was driven by the lithographic improvements. More recently, the scaling is that of the performance and relies on new materials (high K dielectrics and metal gates) and on devices structure innovations (fully-depleted channel devices). The performance scaling of the next decade will likely bring concerted changes not only at the transistor level but also at the interconnect and at the architecture level as the 3rd dimension will be conquered.
The pace of innovation will like continue further as it is driven by technological needs. The scaling of the transistor will be influenced by fundamental physical limits of device switching. As these fundamental limits are reached revolutionary devices that do not rely on simple charge states will likely be used. Devices which employ spin, exciton or plasmon states as the information carrier and state variable have already been proposed and are being actively investigated as replacements for the CMOS transistors.
At imec, we are a investigating not only advanced CMOS devices and “end of the roadmap” transistors, but also Beyond CMOS devices which rely on new materials like graphene and 2D semiconductors and devices that employ a different state variable. This talk will outline these activities.

Brief Bio:

Iuliana Radu is Manager in the Logic Program at imec, where she is leading the Beyond CMOS activities. Prior to joining the Logic Program at imec in 2013, she was a Marie Curie and FWO fellow at KU Leuven and imec. Her work at imec and KU Leuven includes devices using the metal to insulator transition, ionic and electronic transport in functional oxides and devices with graphene and other 2D materials.

last modified: 2017.11.15 Mi
author: webadmin

contact
Prof. Dr. Gianaurelio Cuniberti
secretariat:
Ms Sylvi Katzarow
phone: +49 (0)351 463-31420
fax: +49 (0)351 463-31422
office@nano.tu-dresden.de
postal address:
Institute for Materials Science
TU Dresden
01062 Dresden, Germany
visitors and courier address:
HAL building
TU Dresden
Hallwachsstr. 3
01069 Dresden, Germany
Max Bergmann Center
TU Dresden
Budapester Str. 27
01069 Dresden, Germany