Development of novel diagnostic tools with interest for point of care applications represents one of the main research fields for the nanobiotechnology. Efforts are shown to either develop brand new devices or improve existing ones thanks to the use of nanomaterials and nanotechnologies. Between the various devices biosensing systems based on electrical or optical transducing schemes are overall in the focus of interest given the simplicity and cost efficiency of detection. Among the various biosensing system performance requirements the high sensitivity and selectivity of the response are crucial for applications in clinical diagnostics. The fulfilment of such requirements means the detection of low levels of clinical biomarkers in human fluids. Given the fact that biomarkers are present in very low concentrations the need for biosensing systems that can detect these analytes with high sensitivity and selectivity that include very low detection limits along with high reproducibility is an important challenge. To overcome the difficulties in accomplishing all these requirements the main efforts are driven toward signal amplification and noise reduction of biosensing systems by the incorporation of nanomaterials. Nanomaterials (NMs) such as carbon nanotubes, graphene, metallic nanoparticles, nanowires and quantum dots are showing to be excellent materials to be used as electrochemical transducers or labels in DNA (or genosensors) sensors beside enzymatic sensors, immunosensors, or cell sensors. The amplification of the detection of biorecognition events (ex. DNA hybridization, immunoreactions etc) are the most important objectives of the current bioanalytical chemistry. In this context integration of the catalytic properties of some biomolecules with those of nanomaterials is appearing to be a promising way to enhance the sensitivity of the bioassays. Examples related to various clinical biomarkers as well as contaminants detection will be shown. The developed devices and strategies are intended to be of low cost while offering high analytical performance in screening scenarios beside other applications. Special emphasis will be given to paper-based platforms, including lateral flow formats and simple nanopapers with interest for various fields.
Arben Merkoçi is currently ICREA Professor and director of the Nanobioelectronics & Biosensors Group at Institut Català de Nanociencia i Nanotecnologia (ICN2). After his PhD (1991) at Tirana University (Albania), in the topic of Ion-Selective-Electrodes (ISEs) Dr. Merkoçi worked as postdoc and senior researcher/invited professor in the field of nanobiosensors and lab-on-a-chip technologies in Italy, Spain, USA and since 2006 at ICN2. Prof. Merkoçi research is focused on the design and application of cutting edge nanotechnology and nanoscience based cost/efficient biosensors. The paper/plastic-based nanobiosensors involve integration of biological molecules (DNA, antibodies, cells and enzymes) and other (bio)receptors with micro- and nanostructures/motors and applied in diagnostics, environmental monitoring or safety and security. He has published around 250 peer review research papers, supervised around 25 PhD students and has been invited to give plenary lectures and keynote speeches in around 100 occasions in various countries.