
SCC-DFTB Parametrization for Boron and Boranes
Bernhard Grundkötter-Stock,† Viktor Bezugly,‡,§ Jens Kunstmann,‡ Gianaurelio Cuniberti,‡,§

Thomas Frauenheim,† and Thomas A. Niehaus*,∥

†Bremen Center for Computational Materials Science, Universitaẗ Bremen, Am Fallturm 1, 28359 Bremen, Germany
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ABSTRACT: We present the results of our recent parametrization of the boron−boron and boron−hydrogen interactions for
the self-consistent charge density-functional-based tight-binding (SCC-DFTB) method. To evaluate the performance, we
compare SCC-DFTB to full density functional theory (DFT) and wave-function-based semiempirical methods (AM1 and
MNDO). Since the advantages of SCC-DFTB emerge especially for large systems, we calculated molecular systems of boranes
and pure boron nanostructures. Computed bond lengths, bond angles, and vibrational frequencies are close to DFT predictions.
We find that the proposed parametrization provides a transferable and balanced description of both finite and periodic systems.

1. INTRODUCTION
Since the discovery of the element boron, the structural features
of pure boron and boron hydrogen systems have been
investigated intensely due to their distinction from the bonding
situation found in organic compounds and related systems.1−3

The diversity is attributed to the electron poorness of boron,
meaning that the number of valence orbitals exceeds the
number of valence electrons, giving rise to bonds formed by
two electrons between three centers, so-called 2e3c bonds. One
of the best known examples of this bonding scheme is found in
diborane, B2H6, whose structure was subject to discussion for
some time.4 But also in other structures, uncommon bonding
situations are found, so the whole series of boranes and borates
are not properly described by Lewis structures but by concepts
developed by Lipscomb, Wade, and Williams.5−8

In addition to these fascinating molecular systems, stable
quasi-planar and tubular clusters of elemental boron were first
predicted9,10 and later observed experimentally.11−13 On the
basis of these findings, the existence of more complex pure
boron nanostructures like boron fullerenes,14,15 nanotubes, and
two-dimensional sheets has been predicted.16−21 These
nanostructures are expected to have interesting properties for
application in future nanoscaled devices. Recently, first
successes in the synthesis and characterization of boron
nanotubes22−24 and the first hints on their real atomic structure
and electronic properties23,25 have been reported. Also, in its
bulk phases, boron exhibits a remarkable complexity. All
elemental bulk modifications are based on a three-dimensional
framework of slightly distorted B12 icosahedra. The currently
known elemental bulk phases are α-rhombohedral (α-B12),

26,27

β-rhombohedral,28 β-tetragonal,29 and the γ-orthorhombic (γ-
B28) phases.

30−32 In all of these phases, boron is superhard and
has semiconducting properties.
Given that the structural features of these systems are

outstanding and the size of nanostructures favor computation-
ally less demanding methods than ab initio schemes, we

propose here a parametrization for the boron−boron and
boron−hydrogen interactions in the SCC-DFTB method.33−35

This approximate DFT scheme is shortly introduced in section
2, which also contains computational details and information
on the protocol followed to generate the present para-
metrization. The results in section 3 cover both finite molecular
systems and periodic nanostructures to illustrate the trans-
ferability of the approach. A detailed comparison with respect
to DFT and semiempirical methods applicable to boron
systems is then provided, which is summarized in section 4.

2. METHODS
2.1. Density Functional-Based Tight Binding (DFTB).

The SCC-DFTB method has already been the subject of several
reviews36,37 and will be described here only briefly. In order to
derive the scheme, the total energy of DFT, which is a
functional of the electron density n(r)⃗, is expanded up to
second order around a given reference density n0(r)⃗ with n(r)⃗ =
n0(r)⃗ + δn(r)⃗:35
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Here, Ĥ[n0] is the usual Kohn−Sham Hamiltonian evaluated at
the reference density. Exc and Vxc denote the exchange-
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correlation (xc) energy and potential, respectively, while the
term Eii stands for the ion−ion repulsion. The following further
approximations are applied:

(1) The Kohn−Sham (KS) orbitals Ψi are represented in a
minimal basis of pseudoatomic orbitals ϕμ (Ψi =
∑μcμiϕμ), which are determined from an atomic DFT
calculation with an additional harmonic potential (r/rc)

2

for confinement with respect to the covalent radius r0.
33

The confinement radii, rc, for density and wave function
are chosen separately. While the confinement radius for
the density, rdc, accounts for the compressed atomic
densities found in (molecular) systems, the confinement
radius for the wave function, rwfc, equals more a basis set
optimization also known for ab initio methods. Although
rwfc could also be chosen to be different for each type
of atomic orbital, usually it is chosen to be the same
for s and p functions. We use the gradient corrected
Perdew−Burke−Ernzerhof (PBE)44 exchange-correla-
tion functional in this study. From the resulting
Hamilton matrix elements, Hμν

0 , only diagonal elements,
Hμμ

0 , and two center, nondiagonal elements are kept.
While for Hμμ

0 the atomic eigenvalues are taken, the Hμν
0

are given by

= ⟨φ | ̂ + ̂ + |φ ⟩ μ ∈ ν ∈μν μ νH T V n n[ ] ; A, B0
eff A

0
B
0

(2)

where Veff is the effective KS potential and nA
0 represents

the densities of the neutral atoms A. These elements are
tabulated together with the overlap matrix elements Sμν,
with respect to the inter atomic distance RAB = |R⃗A − R⃗B|.

(2) The density fluctuations δn are written as a superposition
of atomic contributions δnA, which are approximated by
point charges ΔqA. To gain these, the charge difference
between the atom in the molecule (qA) and its neutral
form (qA

0) are calculated by Mulliken analysis:

∑ ∑ ∑δ = δ ≈ Δ = −n n q q q( )
A

A
A

A
A

A A
0

(3)

∑ ∑ ∑= * + *
μ∈ ν

μ ν μν ν μ νμq c c S c c S
1
2

( )
i

i i i iA

occ

A

(4)

The term involving the second derivative of the total
energy is then further approximated by an interpolation
function γAB, determined from analytical evaluation of the
Coulomb interaction of two spherical charge distributions
located at the atomic positions R⃗A and R⃗B. For the case
A = B, it represents the chemical hardness of atom A.

(3) The remaining terms of eq 1, which only depend on the
reference density n0, are collected in a single energy
contribution Erep. This Erep is approximated by a sum of
short-range repulsive potentials, which depend on the
diatomic distance RAB only:
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Application of the variational principle with respect to the
MO coefficients cμi leads to the corresponding Kohn−Sham
equations:
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These must be solved iteratively, because the Hamilton matrix
elements depend on the Mulliken charges, which in turn
depend on MO coefficients cμi. This characterizes the self-
consistent charge DFTB (SCC-DFTB) method.
The repulsive pair potentials, UAB(RAB), are constructed by

performing DFT calculations for a reference system at various
interatomic distances RAB and subtracting from the DFT total
energy the first two terms of eq 5, evaluated at the same
geometry. Interpolation of the data points by means of
polynomials or spline functions provides a continuous potential
for the target element pair.
Therefore, to parametrize an element for the SCC-DFTB

method, the following steps have to be taken:

1. Perform DFT calculations on the neutral atom to determine
the LCAO basis functions ϕμ and the reference density nA

0.
2. Determine suitable confinement radii for the density

(rdc) and wave function (rwfc).
3. Numerically integrate Hamiltonian (Hμν) and overlap

(Sμν) matrix elements, and tabulate the values as a
function of the interatomic distance.

4. Obtain Erep as stated above for every element combination
under interest using suitable reference systems.

The transferability of the parameters has to be subject to
further testing.

2.2. Choice of Basis Set and Confinement Radii.
Intending to extend the well established mio set35,38,39 of Slater−
Koster (SK) files for selected first and second row elements (the
mio set includes the pair potentials for the elements H, C, N, O,
and S), we used, in addition to the new boron−boron and boron−
hydrogen, the existing hydrogen−hydrogen interaction of that set.
Although boron is known for unorthodox bonding situations and
d orbitals might help as polarization functions in such, we found
the restriction of using only up to p orbitals sufficient for our SCC-
DFTB parametrization.
Previous parametrizations for other elements and their

combinations correlated the used confinement radii with the
covalent radius (for boron, r0 = 82 pm) of the atom. It was found
that 5 and approximately 2 times the covalent radius are
reasonable confinement radii for the atomic density and wave
function, respectively. Using these values as a starting point,
confinement radii in the range of 3−10 and 1.5−3.5 times the
covalent radius for the density and the wave function, respectively,
were tested by geometry optimizations. These were performed for
the whole (transferability) test set of molecular systems, which is
described in detail later. For each combination of confinement
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radii, the repulsive potential had to be determined in order to
accomplish the geometry optimizations. As the best confinement
radii, we took the combination leading to the smallest deviations
from DFT/B3LYP calculations with a 6-31G(d) basis set with
respect to interatomic distances and angles. This procedure led to
values of 4.65r0 and 3.23r0 for the density and wave function radii,
respectively.
2.3. Determination of the Repulsive Potential.

According to the parametrization protocol of the SK files
already at hand, the DFT calculations for Erep were performed,
like they were for the mio set, using the exchange-correlation
functional B3LYP and basis set 6-31G(d) with the program
Gaussian 2003.40 As reference systems, we chose B2H4 in D2d
symmetry, which is a stable configuration according to
frequency calculations, for both pairwise interactions. For the
H−B interaction, all four hydrogens were set to equal distances
RAB, conserving the symmetry of the system. Results were
divided by 4, the number of extended distances, to get the
interaction of one pair H−B. A known shortcoming of the mio
set is its overbinding of roughly 10 kcal/mol per bond, which is
clearly observable in atomization energies but does not surface

in isodesmic reactions. In order to achieve a balanced description
of reactions that conserve the number of shared electron pairs, we
shifted the repulsive potentials for H−B and B−B to obtain a
consistent overbinding.41 At a certain cutoff distance rcut, the
repulsive potential is then smoothly brought to zero to ensure
correct dissociation. For the present parametrization, the cutoff
values were chosen to minimize the errors in bonding distances,
angles, and vibrations, which lead to the values rcut

H−B = 1.36 Å and
rcut
B−B = 1.99 Å. A large sensitivity on the cutoff values was found
especially for compounds with 2e3c bonds like B4H10.

3. RESULTS AND DISCUSSION

3.1. Molecular Systems. 3.1.1 Geometries. Our test set
for the new parameters included structures of closo-, nido-, and
archano-boranes with uncharged and charged systems. In order
to evaluate whether the B−B interaction is described correctly,
also molecules formally forming solely two electron bonds were
added. These molecules could be referred to as “carbon-like”
and are hypothetical. Examples of such molecules are B3H5 and
B4H6.

Table 1. Selected Atomic Distances in Molecular Systems (values in Å)a

molecule B3LYP/6-31G(d) PBE/6-31G(d) AM1 MNDO DFTB (MatSci) DFTB (new)

B2H2 B−B 1.525 1.545 1.584 1.603 1.519 1.508
H−B 1.176 1.171 1.199 1.160 1.204 1.185

B2H4 B−B 1.641 1.632 1.513 1.572 1.625 1.639
H−B 1.201 1.212 1.190 1.159 1.214 1.201

B2H6 B−B 1.770 1.767 1.752 1.754 1.797 1.796
H−B 1.191 1.201 1.192 1.164 1.211 1.197
B−H−B 1.317 1.325 1.329 1.350 1.363 1.308

B3H5 B−B 1.638 1.626 1.509 1.567 1.622 1.642
H−B 1.200 1.200 1.190 1.160 1.214 1.201

B4H6 B−B 1.639 1.633 1.513 1.571 1.623 1.645
H−B 1.200 1.211 1.191 1.160 1.214 1.201

B4H10 B−B 1.724 1.721 1.660 1.752 1.663 1.696
H−B 1.191 1.202 1.193 1.166 1.212 1.198
B−H−B 1.257 1.272 1.268 1.257 1.337 1.266
B−H−B 1.417 1.420 1.413 1.515 1.381 1.366

B5H9 B−B 1.695 1.700 1.668 1.759 1.721 1.718
H−B 1.186 1.197 1.185 1.149 1.210 1.194
B−H−B 1.348 1.357 1.348 1.292 1.373 1.321

B12 B−B 1.643 1.643 1.659 1.657 1.645 1.669
B5H5

2− B−B 1.676 1.686 1.518 1.592 1.665 1.679
H−B 1.220 1.228 1.190 1.160 1.253 1.223

B6H6
2− B−B 1.735 1.743 1.726 1.734 1.736 1.744

H−B 1.223 1.232 1.187 1.158 1.244 1.227
B7H7

2− B−B 1.829 1.831 1.783 1.836 1.869 1.831
H−B 1.221 1.230 1.189 1.163 1.240 1.225

B8H8
2− B−B 1.821 1.819 1.780 1.843 1.884 1.824

H−B 1.217 1.225 1.190 1.166 1.237 1.221
B9H9

2− B−B 1.712 1.719 1.580 1.846 1.726 1.725
H−B 1.215 1.225 1.192 1.166 1.233 1.226

B10H10
2− B−B 1.821 1.820 1.760 1.831 1.822 1.798

H−B 1.211 1.221 1.189 1.166 1.231 1.222
B11H11

2− B−B 2.026 2.011 1.910 2.061 2.029 1.956
H−B 1.210 1.221 1.194 1.170 1.231 1.229

B12H12
2− B−B 1.787 1.791 1.758 1.817 1.825 1.793

H−B 1.208 1.217 1.188 1.166 1.227 1.217
RMS error in % 0.59 3.48 4.69 2.47 1.02

aThe root mean square (RMS) error with respect to B3LYP is given for the full set in the last row. Bold printing indicates the respective part of a
2e3c bond.
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For the test of transferability, we calculated interatomic distances
and angles for a set of 16 molecules (B2H2, B2H4, B2H6, B3H5,
B4H6, B4H10, B5H9, B12(D3h), BnHn

2− with n = 5−12). The results
were compared to DFT calculation with the hybrid functional
B3LYP42,43 and 6-31G(d) basis set as a reference, together with
values for the gradient corrected PBE functional and the
semiempirical wave-function-based methods AM145 and
MNDO46 as well as with the existing DFTB-MatSci para-
metrization.47,48 Our findings for the distances are given in Table
1 and for the angles in Table 2.
We decided to use B3LYP calculations as a reference instead

of experimental results in order to have a uniform reference.
While B3LYP calculations could be performed for every
structure, experimental data for the hypothetical “carbon-like”
systems were not at hand since these have not been synthesized
up to now. Moreover, experimental information on bond
distances is often obtained by single crystal X-ray diffraction,
which cannot be directly compared to the calculated gas phase
structures under discussion.

The error for our SCC-DFTB of about 1% is comparable to
PBE, while AM1 and MNDO show larger deviations (about 3 and
4%, respectively). For DFTB-MatSci, the average result is
somewhere in between. All methods do quite well for small,
uncharged molecules. Even for the hypothetical molecules, the
semiempirical methods yield satisfactory results, although these are
probably not part of their parametrization set. An exception for
MNDO are the archano structure B4H10 and the nido structure
B5H9, where the 2e3c bonds are broken and therefore the
molecules are deformed. In the case of B5H9, this deformation is so
drastic that the nido character of the molecule is changed to an
archano-like character, meaning that the basic structural polyhedron
is changed. The errors of AM1 for B12 are fortified by buckling of
the originally planar structure. The limitations of AM1 and MNDO
are identifiable for the charged molecules, when compared to PBE
and SCC-DFTB. DFTB-MatSci seems to be less exact for 2e3c
bonds, where deviations of up to 8% were found, while the
descriptions of terminal H−B bonds and B−B interactions are
reasonable also for charged molecules. In the following, we focus

Table 2. Selected Angles in Molecular Systems (Values in Degrees)a

molecule B3LYP/6-31G(d) PBE/6-31G(d) AM1 MNDO DFTB (MatSci) DFTB (new)

B2H2 H−B−B 180.0 180.0 129.18 132.23 180.0 180.0
B2H4 H−B−B 122.3 122.3 120.5 121.8 122.1 123.1

H−B−H 115.4 114.8 118.9 116.4 115.8 113.7
B2H6 H−B−B 119.0 119.0 118.1 119.5 119.5 120.0

B−H−B 84.4 83.7 82.5 81.0 82.5 86.7
H−B−H 122.1 122.0 123.9 121.0 121.0 119.9

B3H5 B−B−B 129.4 130.8 129.5 127.5 122.2 129.1
H−B−B 121.7 121.5 120.2 121.5 121.7 122.5
H−B−H 116.4 116.4 119.5 117.0 116.6 115.0

B4H6 B−B−B 128.3 128.3 127.9 127.3 121.8 128.4
H−B−B 114.9 114.4 115.9 116.2 118.3 114.9
H−B−H 116.3 116.2 119.6 117.0 116.5 115.1

B4H10 B−B−B 98.6 98.1 102.0 103.7 97.3 99.2
H−B−B 115.7 115.7 112.2 111.5 126.3 121.5
B−H−B 88.1 86.5 86.3 84.8 95.2 92.3
H−B−H 119.0 118.4 126.3 122.9 120.4 117.3

B5H9 B−B−B 64.1 63.8 66.1 64.9 65.8 64.5
H−B−B 131.4 131.7 129.7 118.1 129.8 131.0
B−H−B 83.7 82.9 85.0 86.4 85.8 87.9
H−B−H 90.8 90.3 93.8 102.7 90.4 92.1

B12 B−B−B 179.4 179.4 141.1 178.7 179.9 179.8
B5H5

2− B−B−B 56.9 57.2 49.9 52.1 53.4 55.8
H−B−B 129.2 128.7 140.7 137.9 133.5 130.4

B6H6
2− B−B−B 60.0 60.0 60.1 60.1 60.0 60.0

H−B−B 135.0 135.0 136.9 135.1 135.00 135.0
B7H7

2− B−B−B 63.1 63.0 63.4 63.5 63.6 63.0
H−B−B 140.4 140.7 139.5 139.8 139.3 140.7

B8H8
2− B−B−B 60.2 60.1 60.4 59.8 61.0 60.6

H−B−B 122.4 122.6 119.5 120.6 121.2 121.3
B9H9

2− B−B−B 58.6 58.5 62.1 52.7 56.9 57.8
H−B−B 127.2 127.2 131.0 130.9 127.2 127.0

B10H10
2− B−B−B 90.0 90.0 89.9 90.0 90.0 90.0

H−B−B 131.8 131.8 131.3 131.2 130.8 131.6
B11H11

2− B−B−B 60.9 60.8 61.5 62.0 61.2 61.0
H−B−B 107.2 106.3 108.0 110.2 109.6 105.4

B12H12
2− B−B−B 60.0 60.0 59.9 59.8 60.0 60.0

H−B−B 121.7 121.7 121.7 121.5 121.7 121.7
rms error in % 0.44 3.40 3.36 2.57 1.17

aThe RMS error with respect to the B3LYP results is given in the last row.
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on the new parametrization and report SCC-DFTB results only for
this SK set.
In B5H5

2−, B9H9
2−, and B11H11

2−, notable bond elongations
of about 4% at most are observed for SCC-DFTB. Those are
mainly leading to enlarging the closed cluster on one side and
therefore clustering of atoms on the other. Still the symmetry of
the molecules is conserved. While the clustering of atoms is
observable for AM1 and MNDO, too, these methods also tend
to break the symmetry, which lead to errors of up to 12% and
24%, respectively.
3.1.2. Vibrations. For five molecules out of the test set, a full

normal-mode analysis was performed, yielding 108 vibrational
frequencies in total. In Table 3, the SCC-DFTB results are

compared to PBE/6-31G(d), AM1, and MNDO, while our
reference is again B3LYP/6-31G(d), since experimental values
are not available for all molecules and/or have an unresolved
symmetry of the vibrational modes that might lead to
assignment problems.
In general, the agreement of SCC-DFTB and PBE with the

reference is significantly better than those of AM1 and MNDO,
as can be seen by the resulting RMS error. The performances
for individual vibrational modes of B2H6 and B4H10 are
presented in Tables 4 and 5. The largest errors of SCC-DFTB

occur for bending modes, while stretching modes are more
accurately described. The mean of the absolute difference
between DFT/B3LYP and SCC-DFTB is approximately 53
cm−1. This is nearly the same as for PBE with 41 cm−1, whereas
the deviations for AM1 and MNDO are more than twice as big.
The symmetry ordering of the modes is quite the same for
B3LYP and PBE. AM1, MNDO, and SCC-DFTB have the
same difficulties matching the ordering

3.1.3. Atomization Energies. A further stringent test for the
accuracy of the new parametrization is given by atomization
energies. As mentioned above, the repulsive potentials for H−B
and B−B have been shifted to match the overbinding of the
existing mio SK set. The required shift was determined for the B−
B interaction on B12 and on BH3 for the H−B interaction. In this
way, the overbinding for each interaction could be isolated. Please
note that the shifting process has usually only marginal influence
on geometries and frequencies since the cutoff radius is chosen to
be larger than any typical bonding distance. Tables 6 and 7 list the
results of DFTB together with DFT results using B3LYP, PBE,
and LDA exchange-correlation functionals. As usual, LDA strongly

Table 3. RMS Error of Harmonic Vibrational Frequencies in
% with Respect to the B3LYP/6-31G(d) Reference for
Individual Molecules and the Full Test Seta

molecule PBE/6-31G(d) AMI MNDO DFTB

B2H4 6.47 13.68 16.78 8.36
B2H6 4.84 10.67 10.76 7.37
B3H5 6.36 17.01 19.15 8.98
B4H6 5.59 18.93 20.09 6.59
B4H10 4.60 9.99 10.33 4.57
full test set 5.57 14.05 15.42 7.17

aPrior to the normal mode analysis, the geometries of the molecules
have been optimized at the respective level of theory.

Table 4. Harmonic Vibrational Frequencies of B2H6
in cm−1a

symmetry B3LYP/6-31G(d) PBE/6-31G(d) AM1 MNDO DFTB

B2u 356 305 320 402 357
Ag 797 792 787 819 749
Au 852 832 871 853 747
B2g 888 878 710 823 767
B1g 947 917 966 972 813
B2u 978 897 1128 1192 952
B1u 1000 963 1169 1144 873
B3g 1055 980 1228 1239 1055
B3u 1205 1159 1113 1223 1083
Ag 1210 1161 1301 1308 1098
B3u 1730 1688 1377 1530 1809
B2g 1862 1851 1694 1815 1833
B1u 2019 2020 2117 2303 2162
Ag 2203 2167 2252 2430 2230
B3u 2638 2578 2814 2908 2650
Ag 2651 2590 2807 2905 2661
B1g 2731 2670 2825 2972 2755
B2u 2744 2683 2838 2981 2762

aPrior to the normal mode analysis, the geometries of the molecule
have been optimized at the respective level of theory.

Table 5. Harmonic Vibrational Frequencies of B4H10
in cm−1a

symmetry B3LYP/6-31G(d) PBE/6-31G(d) AM1 MNDO DFTB

A1 212 196 196 243 204
B2 357 342 356 261 397
A2 416 402 274 409 384
B2 466 552 474 494 522
A1 561 586 540 479 452
B1 571 580 522 512 553
A2 678 693 535 549 638
A1 683 660 823 768 627
B1 770 723 756 801 748
A1 807 794 892 889 758
A1 865 844 1036 1016 957
B2 888 865 897 918 833
A2 911 898 790 811 801
B1 921 892 929 908 837
B2 954 909 927 968 907
A1 1021 965 1184 1187 1014
B1 1027 986 1076 1084 929
A2 1044 1002 1021 1017 930
A2 1102 1059 1203 1212 1035
B1 1120 1067 1211 1226 1081
B2 1171 1125 1235 1249 1101
A1 1187 1138 1242 1260 1110
B2 1332 1309 1347 1400 1374
A2 1462 1439 1410 1441 1461
B1 1536 1493 1429 1460 1543
A1 1579 1550 1546 1596 1582
A1 2258 2187 2357 2489 2298
B1 2260 2203 2373 2504 2282
B2 2274 2212 2289 2476 2304
A2 2284 2231 2291 2480 2296
B2 2615 2545 2782 2871 2642
A1 2620 2549 2781 2871 2646
A1 2706 2638 2803 2916 2730
B2 2708 2640 2829 2954 2740
B1 2713 2659 2792 2912 2726
A1 2722 2665 2831 2955 2743

aPrior to the normal mode analysis, the geometries of the molecule
have been optimized at the respective level of theory.
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overbinds while the gradient corrected PBE and the hybrid
functional B3LYP both give more accurate results. DFTB is found
to yield similar results as LDA, and although the average
overbinding of 12.24 kcal/mol per bond is close to the desired
value of 10 kcal/mol, there are also values exceeding 16 kcal/mol.
This overbinding for the molecule with the most B−H−B bonds
in the test set (B5H9) suggests that 2e3c bonds are energetically
not well enough described. However, the errors for B2H6 and
B4H10, which also comprise B−H−B bonds to a large extent, are
smaller than for B3H5, a carbon-like borane. Thus, a decisive clue
why this is the case is missing.
3.1.4. Ionization Potentials. Another interesting topic, due

to the molecules in our test set, is the (vertical) ionization
potentials (IP) of the doublely charged closo clusters. Calculations
on these systems have been performed by McKee et al.,49 who
found that in the series of covered clusters here, only B12H12

2−

should overcome the Coulomb repulsion and therefore has a
positive, vertical ionization potential. The values of the IP are given
in Table 8 and visualized in Figure 1. As one can see, we achieve
the same trend of the IP as does DFT, although we get a slightly
negative IP for B12H12

2−. Any influence of spin polarization for
DFTB50 on the results has also been examined but was found to
be of only marginal effect; therefore, those results are not shown.
Given the fact that the DFTB basis set is roughly the same size as
the STO-3G one, the proximity of the DFTB results to DFT with
larger basis sets is remarkable.
3.2. Periodic Systems. To check the reliability of the

DFTB parametrization for boron in periodic systems, we have
performed geometry relaxation and electronic structure calculations
of bulk elemental boron, three models of stable two-dimensional
boron sheets, and three boron nanotubes obtained by rolling up

each of the three sheets. The DFTB calculations for periodic
systems were also performed within the self-consistent charge
(SCC) scheme. To speed up the convergence of the self-consistent
loop during geometry relaxations, the molecular orbital occupations
were determined according to a Fermi distribution function
corresponding to an electronic temperature of 100 K. For the
subsequent single point calculations at the converged geometries,
the temperature was kept equal to zero. For each system, the
energy was converged with respect to the number of k points.
In order to validate the DFTB results, for the same systems, full

DFT calculations with the generalized gradient approximation44

(called here DFT/PBE approach) were performed using the
projector augmented wave method51 as implemented in the VASP
package.52 The use of the PBE exchange-correlation functional as
the reference here instead of the B3LYP is justified, as the former
provides more reliable geometries and atomization energies of
metallic and small-gap semiconducting systems than the latter.53 Full
geometry optimizations have been carried out, and the atomic forces
were reduced to be below 1 meV/Å. For all of these calculations,
the energy convergence over the number of k points was reached,
and the tetrahedron method for k-integration was used.

3.2.1. Geometries. As a test system for bulk boron, the α-
rhombohedral boron crystal26,27 is chosen. Its rhombohedral
unit cell comprises one B12 icosahedron. Figure 2 shows four

Table 6. Atomization Energies in kcal/mola

molecule B3LYP/6-31G(d) LDA/6-31G(d) PBE/6-31G(d) DFTB

B12 1323.85 1662.03 1453.80 1563.95
BH3 286.74 309.39 295.03 316.84
B2H2 266.20 302.65 337.10 300.43
B2H4 460.12 509.04 459.31 512.23
B2H6 622.64 685.83 614.26 732.58
B3H5 603.66 712.13 640.29 709.76
B4H6 812.05 914.12 820.47 906.67
B4H10 1107.73 1273.90 1128.64 1370.55
B5H9 1182.77 1377.93 1219.35 1464.34

aThe spin polarization energy of isolated atoms was taken into
account. No correction for zero point motion was performed.

Table 7. Overbinding Per Bond in kcal/mol with Respect to
B3LYP/6-31G(d)a

molecule LDA/6-31G(d) PBE/6-31G(d) DFTB

B12 14.00 5.34 10.00
BH3 7.42 2.64 10.03
B2H2 12.03 23.49 11.41
B2H4 9.66 −0.28 10.42
B2H6 6.93 −1.02 12.21
B3H5 15.37 5.12 15.16
B4H6 11.21 0.82 10.51
B4H10 8.66 1.03 13.83
B5H9 11.38 2.06 16.56
average 10.74 4.36 12.24

aThe spin polarization energy of isolated atoms was taken into
account. No correction for zero point motion was performed.

Table 8. Vertical Ionization Iotentials (eV) for Boron
Hydride Dianions (BnHn

2−) Calculated at Different DFT
Levels and with DFTB

n
McKee
et al.49

LDA 6-
311+
+G**

PBE 6-
311+
+G**

B3LYP 6-
311++G**

B3LYP
STO-3G DFTB

5 −2.60 −2.29 −2.12 −2.21 −6.27 −2.97
6 −1.50 −1.14 −0.78 −0.96 −4.29 −2.24
7 −1.00 −0.93 −0.58 −0.68 −3.68 −1.77
8 −1.69 −1.62 −1.73 −1.70 −4.57 −2.06
9 −1.20 −1.03 −1.22 −1.18 −3.98 −2.03
10 −0.27 −0.04 0.22 0.08 −2.28 −1.17
11 −0.54 −0.47 −0.54 −0.54 −2.88 −1.25
12 1.64 1.20 1.97 1.63 −0.03 −0.21

Figure 1. Plot of ionization potential (eV) for removing the first
electron of the dianion (BnHn

2− → BnHn
−). The structure of the

ionized anion was not relaxed; i.e., vertical ionization potentials are
computed. Reference data by McKee et al.49 are also shown for
comparison.
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neighboring unit cells of α-rhombohedral boron. The three
models of boron sheets studied here are the so-called α-sheet,19

the buckled triangular sheet17 (BT-sheet), and the distorted
hexagonal sheet18 (DH-sheet). The lattice structures of these
sheets with the corresponding lattice vectors are shown in
Figure 3.

Boron nanotubes (BNTs) are obtained by rolling up the
corresponding boron sheet along the direction of the so-called
chiral vector. The latter is expressed in terms of the sheet’s
lattice vectors as C⃗ = na1⃗ + ma2⃗. Knowing the lattice vectors of
the original sheet, the structure of a particular nanotube is
defined by the pair of numbers (n,m). Here, we present the

calculations of a (4,0) α-BNT, a (0,12) BT-BNT, and a (4,4)
DH-BNT, which originate from the α-sheet, the BT-sheet, and
the DH-sheet, respectively (see Figure 4).

Full geometry relaxation (optimization of lattice vectors and
the atomic coordinates within a unit cell) was performed at
both the DFTB and DFT/PBE levels of approximation. The
results of geometry optimizations (bond lengths and angles) for
each system are compared, and the root mean squares (RMS)
of deviations in percent are summarized in Table 9.

The overall agreement of the structures obtained with the
two different methods is discernible. For several systems (bulk
boron, DH-sheet, and the BNT derived from this sheet), the

Figure 2. Schematic view of four neighboring unit cells of α-rhombohedral
boron. One unit cell comprises a B12 icosahedron.

Figure 3. Schematic view of the three considered models of two-
dimensional boron sheets: (a) α-sheet, (b) buckled triangular sheet,
and (c) distorted hexagonal sheet; a ⃗1 and a ⃗2 are the lattice vectors.

Figure 4. Schematic view of three boron nanotubes obtained by rolling
up the three different boron sheets: (a) (4,0) α-BNT, (b) (0,12) BT-
BNT, and (c) (4,4) DH-BNT.

Table 9. Overview of Deviation of the Geometric Parameters
for Periodic Systems Calculations between DFT/PBE and
DFTB (RMS in %)

system bond lengths angles

α-rhombohedral 1.7 1.0
α-sheet 5.0 1.9
BT-sheet 3.8 1.6
DH-sheet 1.3 1.4
α-BNT (4,0) 4.3 4.2
BT-BNT (0,12) 3.4 3.4
DH-BNT (4,4) 1.4 2.9
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average deviation of the geometric parameters is close to 2%.
Other systems show larger deviations; however, they do not
exceed 5%. Interestingly, comparing the RMS deviations of a
boron sheet and the corresponding nanotube, one finds that
average deviations of lengths are almost similar, while those of
angles are roughly twice as high for the nanotubes than for the
sheets. Compared to the results for molecular systems (see
Table 1), the deviations of the geometric parameters in the case
of periodic systems are larger. However, one has to emphasize
here that the DFTB parametrization for boron was done in
finite molecular systems using (i) a local basis set and (ii) the
B3LYP exchange-correlation functional. Despite this, one can
conclude that the standard geometry optimization procedures
using new boron SK files is able to deliver reliable results not
only for finite molecules but also for periodic structures.
3.2.2. Electronic Structures. In this section, we compare the

band structures calculated with the DFTB and the DFT/PBE
methods for each of the chosen periodic systems. To allow for
an unbiased comparison, both types of electronic structure
calculations are performed for a fixed geometry, namely, the
relaxed DFT/PBE geometry. The results for the α-rhombohedral
boron are presented in Figure 5. In general, the valence bands

qualitatively agree. For energies close to the Fermi level (EF), the
bands almost coincide; however, for energies far from EF the two
sets of bands deviate quite strongly: namely, the DFTB valence
bands are shifted toward higher values with respect to the DFT/
PBE bands. The deviation of conduction bands is also quite
noticeable: the lowest DFTB conduction band lies higher
compared to the corresponding DFT/PBE one.
Both calculation methods show that α-rhombohedral boron

has an indirect band gap which is defined between the top of
the valence band at the Z point and the bottom of the
conduction band at the B point. The calculated band gap is

equal to 1.840 eV for DFTB and 1.446 eV for DFT/PBE. The
experimentally obtained values of the band gap for this
system54−56 range from 1.9 to 2.055 eV. Thus, both theoretical
approaches underestimate the band gap of α-rhombohedral
boron; however, the DFTB result is closer to the experimental
value. The DFT/PBE values for the energy of the lowest
conduction band at points B and Γ are almost equal to one
another (1.446 and 1.460 eV, respectively). Earlier calcu-
lations27 (with different exchange-correlation functional) gave
similar results. However, the bottom of the conduction band
(1.427 eV) was found to be at the Γ point, and the indirect
band gap was defined between Z and Γ. In contrast, the DFTB
value of the lowest conduction band at Γ is noticeably (by
0.736 eV) higher than at Z.
In the case of two-dimensional boron sheets (see Figure 6),

the DFTB calculation reproduces the DFT band structures
close to Fermi energy quite well (both valence and conduction
bands). The deviations become larger for energies 2 eV and
further away from EF. However, the qualitative agreement for
all valence bands is apparent, and the main difference between
the two sets of bands is seen as a shift of DFTB valence bands
upward. In the region of unoccupied states, the number of
DFTB conduction bands is lower than that of DFT because of
smaller DFTB basis set.
Similar conclusions as for boron sheets can be drawn for

band structures of BNTs (in Figure 7, the bands are shown for
the energy range from −3 to +3 eV). It is seen that even for such
complicated structures like nanotubes with up to 64 atoms per
unit cell (case of (4,0) α-BNT) the agreement between bands,
obtained within DFTB and DFT/PBE approaches, is good.
The comparison of the electronic structures of different periodic

systems shows that the DFTB parametrization is able to reproduce
the band structures quite well for energies close to Fermi energy
(up to 2 eV). Again, it has to be emphasized that the DFTB
parametrization used here for the electronic structure calculation
of periodic systems was constructed for finite molecules using a
different basis set and exchange-correlation functional than those
used in our benchmark periodic calculations. Therefore, these
small deviations of the two sets of bands are to be expected. The
energy bands start to noticeably deviate for energies far from EF,
which is seen as a “compression” of the DFTB set of the valence
bands. This indicates that in our tight binding approach the so-
called hopping integrals are underestimated. However, overall
qualitative agreement of valence bands is obtained. Especially well
reproduced are the bands of metallic systems (like boron sheets
and tubes studied here), while the band structure near the band
gap of nonmetallic systems cannot be accurately reproduced by
DFTB. The problem here is a relatively small basis set for a proper
calculation of unoccupied states, which results also in smaller
number of DFTB conduction bands.

3.2.3. Cohesive Energies. In addition to energy bands, the
cohesive (atomization) energies Ecoh of periodic systems
obtained with DFTB and DFT/PBE are compared for the
optimized geometries. Cohesive energy is defined as Ecoh = Eat

− Etot/N, where Eat and Etot are the ground-state energies of a
spin-polarized isolated boron atom and the whole system,
respectively, and N is the number of atoms in the system. From
this definition, it follows that positive values of Ecoh correspond
to bound (stable) structures. For periodic systems, Etot is
calculated for one unit cell, and N is equal to the number of
atoms per unit cell. The cohesive energies of our test systems
obtained with the two methods and the DFTB overbinding per
bond are summarized in Table 10. The comparison shows that

Figure 5. Comparison of band structures of α-rhombohedral boron
obtained at the DFTB (red lines) and DFT/PBE (black lines) levels of
approximation for the same geometry (taken from the DFT/PBE
calculation).
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DFTB overestimates Ecoh on the average by ca. 1.0 eV/atom.
Normalized to a single bond, we obtain an average overbinding

of 0.366 eV = 8.4 kcal/mol. Such an overestimation is in
agreement with the mentioned overbinding of the presented
basis set by approximately 10 kcal/mol per bond.

Figure 6. Comparison of band structures of three two-dimensional
boron sheets obtained at the DFTB (red lines) and DFT/PBE (black
lines) levels of approximation for the same geometry (taken from the
DFT/PBE calculation): (a) α-sheet, (b) buckled triangular sheet, and
(c) distorted hexagonal sheet. Valence bands qualitatively agree. Due
to a relatively small basis set, DFTB shows fewer conduction bands
than DFT/PBE. Close to the Fermi energy, DFTB accurately
reproduces all bands.

Figure 7. Comparison of band structures of three boron armchair
nanotubes obtained at the DFTB (red lines) and DFT/PBE (black
lines) levels of approximation for the same geometry (taken from the
DFT/PBE calculation): (a) (4,0) α-BNT, (b) (0,12) BT-BNT, and
(c) (4,4) DH-BNT.
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4. SUMMARY
In this paper, we apply the SCC-DFTB method to boron and
boranes. Our parametrization was tested for molecular and
periodic systems in different properties like geometries, vibrational
frequencies, atomization energies, and band structures. Although
only the hypothetical molecule B2H4 was used as the needed
fitting system, we achieved good transferability to other systems
regardless of 2e3c bonds or periodic boundaries. For geometries
and vibrations of molecules, we accomplish results near the level of
B3LYP or PBE and do much better than AM1 and MNDO. While
molecular atomization energies match the results of LDA cal-
culations more than B3LYP or PBE, our minimal basis approach is
effective to describe the band structures compared to PBE. This is
also reflected in the results for the ionization of the dianion closo
clusters, although DFTB predicts even B12H12

2− to be unstable on
its own. Therefore, our work presented here is a first step to
enlarge the application possibilities of SCC-DFTB by including
boron in the list of parametrized atoms.
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