We describe here the investigation of the current switching observed in a molecular junction formed by a PTCDA molecule between an STM tip and an Ag(111) surface, which is believed to be due to the carboxylic oxygen atom switching between the surface and the tip. We use a generalized version of a model developed in 1997 by Gao et al. [1] to investigate the results observed in these experiments. The distribution of the switching events measured in the experiments shows a power law dependence for small bias voltages, whereas for higher voltages it first saturates and then drops again.

Experiment
- Experiments done in the Tautz group at the Forschungszentrum Jülich
- STM measurements on PTCDA on Ag(111)
- Switching between two conductance states for particular tip-surface distances
- Switches occur only if the STM-tip is located over the carboxylic oxygen atom (red dots in Fig. 1)

Model – Transition rates
- System Hamiltonian
 \[H_w = \sum \varepsilon_n c_n^\dagger c_n + \sum \varepsilon_p c_p^\dagger c_p + \varepsilon_s c_s^\dagger c_s + \sum_{k=1}^{\infty} \beta_k (t_k c_k^\dagger c_i + H.c.) \]
- Electron-vibron interaction \(H_{e-v} \) within first-order perturbation theory \(\Rightarrow \) Fermi’s golden rule for transition rates
 \[\Gamma_{1,1} = \frac{2 \pi}{\hbar} \sum \left| \langle e_0 | H_{e-v} | 1/0 \rangle \right|^2 \times \delta (\varepsilon_0 - \varepsilon_s + \hbar \omega) \]
- Low temperatures, adsorbate level within wide-band limit
- Transition rates, e.g.
 \[\Gamma_{1,1}^{e-v} = \frac{2 \pi}{\hbar} \sum_{\varepsilon_n} \rho_{e}^s(\varepsilon_n) \rho_{e}^{\dagger}(\varepsilon_n) \Delta \varepsilon \]
 Sketch of our model. The transfer of the PTCDA from surfaces to tip is due to several inelastic scattering events.

Model – Transfer rate
- Double well approximated by two truncated harmonic oscillators
- Pauli master equation, only nearest neighbor transitions
 \[R = n \Gamma \exp \left(-\frac{(n-1)\hbar \omega}{k_B T_v} \right) \sim n \Gamma \left(\frac{T}{T_v} \right)^{1-n} \]
 Linear dependence of barrier height (\(\Rightarrow n \)) on the applied bias voltage

Results
- Power law behavior for small bias
- Saturation for higher bias
- For even higher bias the potential changes from a double well to a single well
 \(\Rightarrow \) Transfer rate becomes zero, because molecule stays at the tip or at the surface
- Fitting to measurements is quite demanding, because of many unknown constants
 \(\Rightarrow \) Density Functional Theory (DFT) helps to determine correct values for parameter

Other switching mechanism which can be excluded
- Quantum tunneling (probability very small; size of PTCDA)
- Thermal activation (cryogenic STM)
- Vibrational-assisted, involving 1 vibron (barrier height)
- Switching involving a metastable ionic state (small voltages induce switching)

Conclusion and Outlook
- Current switching of PTCDA on Ag(111) can be described by a truncated harmonic oscillator model
- Quantitative agreement combining DFT calculations and fitting procedure to determine model parameters
- Deeper investigation of the determined parameters
- Introducing temperature and phonon-phonon interaction between surface and adsorbate

References