ResearchGateMimicking on-water surface synthesis through micellar interfaces
Nature Communications (2024).
Anupam Prasoon, Shaik Ghouse, Nguyen Ngan Nguyen, Hyejung Yang, Alina Müller, Chandrasekhar Naisa, Silvia Paasch, Abdallh Herbawe, Muhannad Al Aiti, Gianaurelio Cuniberti, Eike Brunner & Xinliang Feng.
Journal DOI: https://doi.org/10.1038/s41467-024-54962-z

The chemistry of the on-water surface, characterized by enhanced reactivity, distinct selectivity, and confined reaction geometry, offers significant potential for chemical and materials syntheses. However, the utilization of on-water surface synthesis is currently limited by the requirement for a stable air-water interface, which restricts its broader synthetic applications. In this work, we present a approach that mimics on-water surface chemistry using micelles. This method involves the self-assembly of charged surfactant molecules beyond their critical micelle concentration (CMC), forming micellar structures that simulate the air-water interface. This creates an environment conducive to chemical reactions, featuring a hydrophobic core and surrounding water layer. Utilizing such mimicking on-water surface with the assembly of porphyrin-based monomers featuring distinct confined geometry and preferential orientations, we achieve reactivity and selectivity (≥99%) in fourteen different reversible and irreversible chemical reactions. Extending the versatility of this approach, we further demonstrate its applicability to two-dimensional (2D) polymerization on micellar interfaces, successfully achieving the aqueous synthesis of crystalline 2D polymer thin layers. This strategy significantly broadens the accessibility of on-water surface chemistry for a wide range of chemical syntheses.

Get PDF from journal website
Cover
©https://doi.org/10.1038/s41467-024-54962-z
Share


Involved Scientists
ResearchGateMimicking on-water surface synthesis through micellar interfaces
Nature Communications (2024).
Anupam Prasoon, Shaik Ghouse, Nguyen Ngan Nguyen, Hyejung Yang, Alina Müller, Chandrasekhar Naisa, Silvia Paasch, Abdallh Herbawe, Muhannad Al Aiti, Gianaurelio Cuniberti, Eike Brunner & Xinliang Feng.
Journal DOI: https://doi.org/10.1038/s41467-024-54962-z

The chemistry of the on-water surface, characterized by enhanced reactivity, distinct selectivity, and confined reaction geometry, offers significant potential for chemical and materials syntheses. However, the utilization of on-water surface synthesis is currently limited by the requirement for a stable air-water interface, which restricts its broader synthetic applications. In this work, we present a approach that mimics on-water surface chemistry using micelles. This method involves the self-assembly of charged surfactant molecules beyond their critical micelle concentration (CMC), forming micellar structures that simulate the air-water interface. This creates an environment conducive to chemical reactions, featuring a hydrophobic core and surrounding water layer. Utilizing such mimicking on-water surface with the assembly of porphyrin-based monomers featuring distinct confined geometry and preferential orientations, we achieve reactivity and selectivity (≥99%) in fourteen different reversible and irreversible chemical reactions. Extending the versatility of this approach, we further demonstrate its applicability to two-dimensional (2D) polymerization on micellar interfaces, successfully achieving the aqueous synthesis of crystalline 2D polymer thin layers. This strategy significantly broadens the accessibility of on-water surface chemistry for a wide range of chemical syntheses.

Get PDF from journal website
Cover
©https://doi.org/10.1038/s41467-024-54962-z
Share


Involved Scientists