We report on ac transport through carbon nanotube Fabry-Perot devices. We show that tuning the intensity of the ac gating induces an alternation of suppression and partial revival of the conductance interference pattern. For frequencies matching integer multiples of the level spacing of the system Δ, the conductance remains irresponsive to the external field. In contrast, the noise in the low bias voltage limit behaves as in the static case only when the frequency matches an even multiple of the level spacing, thereby highlighting its phase sensitivity in a manifestation of the wagon-wheel effect in the quantum domain.
We report on ac transport through carbon nanotube Fabry-Perot devices. We show that tuning the intensity of the ac gating induces an alternation of suppression and partial revival of the conductance interference pattern. For frequencies matching integer multiples of the level spacing of the system Δ, the conductance remains irresponsive to the external field. In contrast, the noise in the low bias voltage limit behaves as in the static case only when the frequency matches an even multiple of the level spacing, thereby highlighting its phase sensitivity in a manifestation of the wagon-wheel effect in the quantum domain.